

IPART’s documentation

Table of Contents

	Introduction

	Installation

	Install from conda-forge

	Create a conda environment using the environment file

	Dependencies

	Main functionalities

	ipart module contents

	Github and Contact

	Contributing and getting help

	Citation

	License

Introduction

IPART (Image-Processing based Atmospheric River Tracking) is a Python
package for automated Atmospheric River (AR) detection, axis finding and AR
tracking from gridded Integrated Vapor Transport (IVT) data, for instance
Reanalysis datasets [https://www.esrl.noaa.gov/psd/data/gridded/reanalysis/].

An overview of what ARs are can be found in this review paper: Atmospheric
rivers: a mini-review [https://doi.org/10.3389/feart.2014.00002].

IPART is intended for researchers and students who are interested in the
field of atmospheric river studies in the present day climate or future
projections. Different from commonly used AR detection methods that rely on
thresholding on the IVT magnitude, this package includes a method inspired by
an image processing technique – Top-hap by reconstruction (THR) [https://ieeexplore.ieee.org/document/217222].

Below is an example output figure:

[image: _images/ar_1984-01-04_06:00.png]
Fig. 1 (a) The IVT field in kg/(m*s) at 1984-01-04 06:00 UTC over the North
Hemisphere. (b) the IVT reconstruction field at the same time point. (c)
the IVT anomaly field from the THR process at the same time point. In all
three subplots, the detected ARs are outlined in black contour. The AR axes
are drawn in green dashed lines.

Installation

Install from conda-forge

ipart can be installed in an existing conda environment:

conda install -c conda-forge ipart

will install ipart and its dependencies for Python 3.

Create a conda environment using the environment file

Alternatively, users can obtain the code of this pacakge from the
github page [https://github.com/ihesp/IPART], and create a new
conda environment using the environment files provided.
This way will install the optional cartopy package and allow you to run
the notebook examples.

git clone https://github.com/ihesp/IPART
cd IPART
conda env create -f environment_py3.yml

This creates a new environment named ipartpy3. Activate the environment using:

conda activate ipartpy3

After that, you can check the list of packages installed by:

conda list

Similarly for Python 2, use:

conda env create -f environment_py2.yml

Dependencies

	OS: Linux or MacOS. Windows is not tested.

	Python2.7 or Python3.7.

	netCDF4 (tested 1.4.2, 1.5.3 in py2, tested 1.5.3 in py3)

	numpy (developed in 1.16.5 in py2, tested 1.18.1, 1.19.0 in py3)

	scipy (developed in 1.2.1 in py2, tested 1.4.1, 1.5.1 in py3)

	matplotlib (tested 2.2.5 in py2, tested 3.3.1 in py3)

	pandas (developed in 0.23.4, 0.24.2 in py2, tested 1.0.3, 1.0.5 in py3)

	networkx (developed in 1.11 and 2.2 in py2, tested 2.4 in py3)

	scikit-image (developed in 0.14.2, 0.14.3 in py2, tested 0.16.2, 0.17.2 in py3)

	cartopy (optional, only used for plotting. Tested 0.17.0 in py2, tested 1.18.0 in py3)

Main functionalities

There are four main functionalities provided by the package that collectively constitute a
specific workflow for the automated AR detection/tracking task:

	Perform THR computation on input data.

	Detect ARs from the outputs from the previous step, and at the same time,

	Identify the AR axis.

	Track ARs detected at individual time steps to form tracks.

More details regarding these steps are provided in separate pages below.

Applications on example data can be found in a series of example notebooks at
github repository [https://github.com/ihesp/IPART/blob/master/notebooks/Index.ipynb].

The automated AR detect/tracking workflow:

	Data preparation
	netcdf data

	Metadata

	Compute IVT

	Perform the THR computation on IVT data
	The Top-hat by Reconstruction (THR) algorithm

	Compute THR

	Dedicated Python script

	Example output

	Notebook example

	References

	Detect AR appearances from THR output
	Definition of AR occurrence

	Input data

	Usage in Python scripts

	Dedicated Python script

	Example output

	Notebook example

	Find the axis from detected AR
	Axis-finding in a planar graph framework

	Usage in Python scripts

	Dedicated Python script

	Notebook example

	Track ARs at individual time steps to form tracks
	The modified Hausdorff distance definition

	The nearest neighbor link method

	Input data

	Usage in Python scripts

	Example output

	Dedicated Python script

	Notebook example

ipart module contents

	thr.py

	AR_detector.py

	AR_tracer.py

	utils.funcs.py (selected parts)

	utils.plot.py (selected parts)

Github and Contact

The code of this package is hosted at https://github.com/ihesp/IPART.

For any queries, please contact xugzhi1987@gmail.com.

Contributing and getting help

We welcome contributions from the community. Please create a fork of the
project on GitHub and use a pull request to propose your changes. We strongly encourage creating
an issue before starting to work on major changes, to discuss these changes first.

For help using the package, please post issues on the project GitHub page.

Citation

If you use IPART in published research, please cite it by referencing the
peer-reviewed work published in JOSS:

[image: _images/status.svg]
 [https://doi.org/10.21105/joss.02407]

License

LICENSE

Indices and tables

	Index

	Module Index

	Search Page

Data preparation

netcdf data

Source data are the u- and v- components of the vertically integrated vapor
fluxes, in a rectangular grid.

The u-component of the vertically integrated vapor fluxes have a standard_name of eastward_atmosphere_water_transport_across_unit_distance [http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html].

The v-component of the vertically integrated vapor fluxes have a standard_name of northward_atmosphere_water_transport_across_unit_distance [http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html].

These are usually computed as:

\[\begin{split}\left\{\begin{matrix}
F_u & = \int_{TOA}^{P_s} \frac{u q }{g} dP \\
F_v & = \int_{TOA}^{P_s} \frac{v q }{g} dP
\end{matrix}\right.\end{split}\]

where

	\(F_u\) (\(F_v\)) is the zonal (meridional) component of the integrated flux, both
in \(kg/(m*s)\).

	\(u\) (\(v\)): is the zonal (meridional) wind speed (in \(m/s\)) at a given level, and
\(q\) is the specific humidity (in kg/kg) at the same level.

	\(dP\) is the pressure increment, in \(Pa\), and \(g\) is acceleration by gravity.

	\(TOA\) can be substituted with a sensibly high level, e.g. \(300 hPa\).

No strict requirement for the spatial or temporal resolution of input data is imposed, however, for
better results, one should use something greater than \(\sim 1.5 ^{\circ}\) latitude/longitude.
6-hourly temporal resolution is a standard for Reanalysis
datasets [https://www.esrl.noaa.gov/psd/data/gridded/reanalysis/], daily would probably work, but
one should do some parameter adjustments in such a case.

Data are supposed to saved in netcdf files [https://www.unidata.ucar.edu/software/netcdf/docs/index.html].

Metadata

Note

the user is responsible for making sure that the data are saved in the following rank order:

(time, level, latitude, longitude)

or:

(time, latitude, longitude)

The level dimension is optional. As data are vertical integrals, the length
of the level dimension, if present, should be 1.

The user also needs to provide the time, latitude and longitude axes values.
This is because these temporal and geographical information is used in the computation.

To test the sanity of your input data, run this script against the netcdf data file:

cd /path/to/IPART/folder/you/cloned
python test_data.py /path/to/your/netcdf/file 'id_of_variable'

For instance

cd ~/Downloads/IPART
python test_data.py ~/datasets/erai/uflux_file.nc 'uflux'

The expected outputs would look like this:

<test_data>: Read in file:
 /home/guangzhi/scripts/IPART/notebooks/uflux_s_6_1984_Jan.nc
##
Variable time axis:
##
Description of slab
 id: time
 shape: (124,)
 filename: None
 missing_value: None
 comments: None
 grid_name: None
 grid_type: None
 long_name: time
 units: hours since 1900-01-01 00:00:00.0
 standard_name: None
 Order: []

End of description

None
Time axis values:
[datetime.datetime(1984, 1, 1, 0, 0) datetime.datetime(1984, 1, 1, 6, 0)
 datetime.datetime(1984, 1, 1, 12, 0) datetime.datetime(1984, 1, 1, 18, 0)
 datetime.datetime(1984, 1, 2, 0, 0) datetime.datetime(1984, 1, 2, 6, 0)
 datetime.datetime(1984, 1, 2, 12, 0) datetime.datetime(1984, 1, 2, 18, 0)
 datetime.datetime(1984, 1, 29, 0, 0) datetime.datetime(1984, 1, 29, 6, 0)
 ...
 datetime.datetime(1984, 1, 31, 12, 0)
 datetime.datetime(1984, 1, 31, 18, 0)]

##
Variable latitude axis:
##
Description of slab
 id: latitude
 shape: (94,)
 filename: None
 missing_value: None
 comments: None
 grid_name: None
 grid_type: None
 long_name: latitude
 units: degrees_north
 standard_name: None
 Order: []

End of description

None
Latitude axis values:
[10. 10.75 11.5 12.25 13. 13.75 14.5 15.25 16. 16.75 17.5 18.25
 19. 19.75 20.5 21.25 22. 22.75 23.5 24.25 25. 25.75 26.5 27.25
 28. 28.75 29.5 30.25 31. 31.75 32.5 33.25 34. 34.75 35.5 36.25
 37. 37.75 38.5 39.25 40. 40.75 41.5 42.25 43. 43.75 44.5 45.25
 46. 46.75 47.5 48.25 49. 49.75 50.5 51.25 52. 52.75 53.5 54.25
 55. 55.75 56.5 57.25 58. 58.75 59.5 60.25 61. 61.75 62.5 63.25
 64. 64.75 65.5 66.25 67. 67.75 68.5 69.25 70. 70.75 71.5 72.25
 73. 73.75 74.5 75.25 76. 76.75 77.5 78.25 79. 79.75]

##
Variable longitude axis:
##
Description of slab
 id: longitude
 shape: (480,)
 filename: None
 missing_value: None
 comments: None
 grid_name: None
 grid_type: None
 long_name: longitude
 units: degrees_east
 standard_name: None
 Order: []

End of description

None
Longitude axis values:
[-180. -179.25 -178.5 -177.75 -177. -176.25 -175.5 -174.75 -174.
 -173.25 -172.5 -171.75 -171. -170.25 -169.5 -168.75 -168. -167.25
 -166.5 -165.75 -165. -164.25 -163.5 -162.75 -162. -161.25 -160.5
 ...
 164.25 165. 165.75 166.5 167.25 168. 168.75 169.5 170.25
 171. 171.75 172.5 173.25 174. 174.75 175.5 176.25 177.
 177.75 178.5 179.25]

Data have unit of "kg m**-1 s**-1"

Pay some attention to the values listed in the latitude and longitude
axes blocks, to make sure the values make physical sense. For high resolution
data, the input variable may have a fairly large size, e.g. a longitude axis of
length 720 (if your data have a resolution of \(0.5 \times 0.5 ^{\circ}\)).
If the longitude axis reports a largest value of 720, it is probably reporting
the size of the longitude dimension, rather than the actual longitude label (as
the maximum possible longitude label should be 360). In such cases, the user
should take some extra steps to make sure that the data have proper metadata
associated with them.

Compute IVT

With \(F_u\) and \(F_v\), compute the IVT as

\[IVT = \sqrt{F_u^2 + F_v^2}\]

This is trivial to achieve, you can use the compute_ivt.py script provided
in the package for this computation.

Perform the THR computation on IVT data

The Top-hat by Reconstruction (THR) algorithm

The AR detection method is inspired by the image processing technique
top-hat by reconstruction (THR), which consists of
subtracting from the original image a greyscale reconstruction by
dilation image.
Some more details of the THR algorithm and its applications
can be found in this work of [Vincent1993].

In the context of AR detection, the greyscale image in question is
the non-negative IVT distribution, denoted as \(I\).

The greyscale reconstruction
by dilation component (hereafter reconstruction) corresponds to the
background IVT component, denoted as \(\delta(I)\).

The difference
between \(I\) and \(\delta(I)\) gives the transient IVT component, from
which AR candidates are searched.

Note

we made a modification based on the THR algorithm as descripted in [Vincent1993]. The marker image used in this package is obtained by a grey scale erosion 1 with a structuring element \(E\), while in a standard THR process as in [Vincent1993], the marker image is obtained by a global substraction \(I - \delta h\), where \(\delta h\) is the pixel intensity subtracted globally from the original input image \(I\).

The introduction of the grey scale erosion process allows us to have a control
over on what spatio-temporal scales ARs are to be detected.
An important parameter in this erosion
process is the size of the structuring element \(E\).

We then extend the processes of erosion and reconstruction to 3D (i.e. time,
x- and y- dimensions), measuring “spatio-temporal spikiness”.
The structuring element used for 3D erosion is a 3D
ellipsoid:

\[E = \left \{(z,x,y) \in \mathbb{Z}^3 \mid (z/t)^2 + (x/s)^2 + (y/s)^2 \leq 1 \right \}\]

with the axis length along the time dimension being \(t\), and the axes
for the x- and y- dimensions sharing the same length \(s\). Both \(t\) and
\(s\) are measured in pixels/grids.

Note

the axis length of an ellipsoid is half the size of the ellipsoid in that dimension. For relatively large sized \(E\), the difference in the THR results using an ellipsoid structuring element and a 3D cube with size \((2t+1, 2s+1, 2s+1)\) is fairly small.

Considering the close physical correspondences between ARs and
extra-tropical storm systems, the
“correct” THR parameter choices of \(t\) and \(s\) should be centered
around the spatio-temporal scale of ARs.

Let’s assume the data we are working with is 6-hourly in time,
and \(0.75 \times 0.75 ^{\circ}\) in space.

The typical synoptic time
scale is about a week, giving \(t = 4 \, days\) (recall that \(t\) is only
half the size of the time dimension).

The typical width of
ARs is within \(1000 \, km\),
therefore \(s = 6 \, grids\) is chosen. Given the \(0.75 \,^{\circ}\)
resolution of data, this corresponds to a distance of about
\(80 km/grid \times (6 \times 2 + 1) grids = 1040 \, km\). An extra grid
is added to ensure an odd numbered grid length, same for the \(t\)
parameter: the number of time steps is \(4\, steps/day \times 4 days \times 2 + 1\, step = 33\, steps\).

Compute THR

Using the above setup, the THR process is computed using following code:

from ipart import thr
ivt, ivtrec, ivtano = thr.THR(ivt_input, [16, 6, 6])

where ivt_input is the input IVT data, ivtrec is the reconstruction
component, and ivtano is the anomalous component.

Note

the thr.THR() function accepts an optional argument oro, which is to provide the algorithm with some surface elevation information, with the help of which detection sensitivity of landfalling ARs can be enhanced.

See also

thr.THR().

Dedicated Python script

The package provides two script to help doing this computation:

	compute_thr_singlefile: when your IVT data are saved in a single file.

	compute_thr_multifile: when your IVT data are too large to fit in a single file, e.g. data spanning
multiple decades and saved into one-file-per year. Like in the case of a simple moving average,
discontinuity at the end of one year and the beginning of the next may introduce some errors. When
the data are too large to fit into RAM, one possible solution is to read in 2 years at a time,
concatenate them then perform the filtering/THR process to achieve a smooth year-to-year transition.
Then read in the 3rd year to form another 2-year concatenation with the 2nd year. Then the process
rotates on untill all years are processed.

Example output

[image: _images/fig3.png]
Fig. 2 (a) The IVT field in kg/(m*s) at 1984-01-26 00:00 UTC over the North
Hemisphere. (b) the IVT reconstruction field (\(\delta(I)\)) at the same time point. (c)
the IVT anomaly field (\(I-\delta(I)\)) from the THR process at the same time point.

Notebook example

An example of this process is given in this notebook [https://github.com/ihesp/IPART/blob/master/notebooks/2_compute_THR.ipynb].

References

Footnotes

	1

	Greyscale erosion (also known as minimum filtering) can be understood by analogy with a moving average. Instead of the average within a neighborhood, erosion replaces the central value with the neighborhood minimum. Similarly, dilation replaces with the maximum. And the neighborhood is defined by the structuring element \(E\).

	Vincent1993(1,2,3)

	
	Vincent, “Morphological grayscale reconstruction in image analysis: applications and efficient algorithms,” in IEEE Transactions on Image Processing, vol. 2, no. 2, pp. 176-201, April 1993.

Detect AR appearances from THR output

Definition of AR occurrence

An AR occurrence at a given time point is defined using these following rules:

	A connected region in the IVT anomaly field (\(I - \delta(I)\),
computed in the section “The Top-hat by Reconstruction (THR) algorithm”) where its values is greater than 0.

	The centroid (weighted by IVT values of the grid cells) of the region is north of \(20 ^{\circ} N\) (or south of \(20 ^{\circ} S\) for the Southern Hemisphere),
and south of \(80 ^{\circ} N\) (or north of \(80 ^{\circ} S\) for the Southern Hemisphere), i.e. we are only interested in mid-latitude systems.

	The region’s area has to be within \(50 - 1800 \times 10^4 km^2\).

	After the computation of this AR candidates axis (see Find the axis from detected AR) and the effective width (defined as area/length ratio), the length has to be \(\ge\, 1500 km\), and length/width ratio has to be \(\ge \,2\) if length is below \(2000\, km\).

Note

API is provided to control all these parameters.

Input data

These are the input data required for AR occurrence detection:

	u- and v- components of the integrated vapor fluxes (\(F_u\) and \(F_v\)).

	IVT (as \(\sqrt{F_u^2 + F_v^2}\)), see Compute IVT for more.

	The output from the THR process: the reconstruction component (\(\delta(I)\)) and the anomaly
component (\(I - \delta(I)\)). See The Top-hat by Reconstruction (THR) algorithm for more.

Additional inputs:

	latitude, longitude and time axis. See Metadata for more.

	detection parameters, see below.

PARAM_DICT={
 # kg/(m*s), define AR candidates as regions >= than this anomalous ivt.
 'thres_low' : 1,

 # km^2, drop AR candidates smaller than this area.
 'min_area': 50*1e4,

 # km^2, drop AR candidates larger than this area.
 'max_area': 1800*1e4,

 # float, min length/width ratio, applied only when length<min_length.
 'min_LW': 2,

 # degree, exclude systems whose centroids are lower than this latitude.
 'min_lat': 20,

 # degree, exclude systems whose centroids are higher than this latitude.
 'max_lat': 80,

 # km, ARs shorter than this length is treated as relaxed.
 'min_length': 2000,

 # km, ARs shorter than this length is discarded.
 'min_length_hard': 1500,

 # degree lat/lon, error when simplifying axis using rdp algorithm.
 'rdp_thres': 2,

 # grids. Remove small holes in AR contour.
 'fill_radius': None,

 # do peak partition or not, used to separate systems that are merged
 # together with an outer contour.
 'single_dome': False,

 # max prominence/height ratio of a local peak. Only used when SINGLE_DOME=True
 'max_ph_ratio': 0.6,

 # minimal proportion of flux component in a direction to total flux to
 # allow edge building in that direction
 'edge_eps': 0.4
 }

Usage in Python scripts

The following snippet shows the detection function calls:

from ipart.AR_detector import findARs
time_idx, labelsNV, anglesNV, crossfluxesNV, result_df = findARs(ivtNV.data,
 ivtrecNV.data, ivtanoNV.data, quNV.data, qvNV.data, latax, lonax,
 times=timeax, **PARAM_DICT)

where these input arguments are:

	ivtNV is a ipart.utils.NCVAR data object, which is a rudimentary wrapper
object designed to achieve a tighter bound between data values and metadata.
Same for the other variables with an NV suffix.

	ivtNV.data is the IVT data values in numpy.ndarray format, with
dimensions of (time, level, latitude, longitude) or (time, latitude, longitude).

	ivtrecNV is \(\delta(I)\), and ivtanoNV is \(I-\delta(I)\), see The Top-hat by Reconstruction (THR) algorithm for more details.

	quNV: is \(F_u\), and qvNV is \(F_v\).

	latax: is an 1d array storing the latitude coordinates of ivtNV and others.

	lonax: is an 1d array storing the longitude coordinates of ivtNV and others.

	timeax is a list of python datetime objects storing time stamps of the data in ivtNV and others.

	PARAM_DICT is the parameter dictionary as defined above.

The return values are:

	time_idx is a list of indices of the time dimension when any AR is found.

	labelsNV is a ipart.utils.NCVAR object, whose data attribute is an
ndarray variable saving the numerical labels of all found ARs in each time step. It has shape of (time, lat, lon).

	anglesNV is a ipart.utils.NCVAR object storing an ndarray variable saving the difference in the orientation of IVT vectors in all found ARs, wrt the AR axis.

	crossfluxesNV is a ipart.utils.NCVAR object storing an ndarray variable saving the cross-sectional IVT flux, computed as the projection of IVT vectors onto the AR axis, using angles in angles.

	The result_df return value is a pandas.DataFrame object saving in a table the various attributes of all detected ARs at this time point.

See also

AR_detector.findARs(), AR_detector.findARsGen(), AR_detector.getARData().

AR records DataFrame

The rows of ardf are different AR records, the columns of ardf are listed below:

	id : integer numeric id for this AR at this particular time point. ARs at different time points can share the same id, and an AR can be uniquely identified with the combination of time stamp + id.

	time : time stamp in the YYYY-MM-DD HH:mm:ss format.

	contour_y : list of floats, the y-coordinates (latitudes) of the AR contour in degrees North.

	contour_x : list of floats, the x-coordinates (longitude) of the AR contour in degrees North.

	centroid_y : float, latitude of the AR centroid, weighted by the IVT value.

	centroid_x : float, longitude of the AR centroid, weighted by the IVT value.

	axis_y : list of floats, latitudes of the AR axis.

	axis_x : list of floats, longitude of the AR axis.

	axis_rdp_y : list of floats, latitude of the simplified AR axis.

	axis_rdp_x : list of floats, longitude of the simplified AR axis.

	area : float, area of the AR in \(km^2\).

	length : float, length of the AR in \(km\).

	width : float, effective width in \(km\), as area/length.

	LW_ratio : float, length/width ratio.

	strength : float, spatially averaged IVT value within the AR region, in \(kg/(m \cdot s)\).

	strength_ano : float, spatially averaged anomalous IVT value within the AR region, in \(kg/(m \cdot s)\).

	strength_std : float, standard deviation of IVT within the AR region, in \(kg/(m \cdot s)\).

	max_strength : float, maximum IVT value within the AR region, in \(kg/(m \cdot s)\).

	mean_angle : float, spatially averaged angle between the IVT vector and the AR axis, in degrees.

	is_relaxed : True or False, whether the AR is flagged as “relaxed”.

	qv_mean : float, spatially averaged meridional integrated vapor flux, in \(kg/(m \cdot s)\).

Dedicated Python script

You can use the scripts/detect_ARs.py or
scripts/detect_ARs_generator_version.py script (check them out in the
github repo [https://github.com/ihesp/IPART]).
for AR detection process in
production. The former does the computation and returns all outpus in one go,
and the latter yields results at each time step separately, so the outputs can
be saved to disk rather than accumulating in RAM. Note that this process is
essentially time-independent, i.e. the computation of one time point does not
rely on another, therefore you can potentially parallelize this process to
achieve greater efficiency.

Example output

The resultant detected ARs can be visualized using the following snippet:

import matplotlib.pyplot as plt
from ipart.utils import plot
import cartopy.crs as ccrs

plot_vars=[slab,slabrec,slabano]
titles=['IVT', 'Reconstruction', 'THR']
iso=plot.Isofill(plot_vars,12,1,1,min_level=0,max_level=800)

figure=plt.figure(figsize=(12,10),dpi=100)

for jj in range(len(plot_vars)):
 ax=figure.add_subplot(3,1,jj+1,projection=ccrs.PlateCarree())
 pobj=plot.plot2(plot_vars[jj],iso,ax,
 xarray=lonax, yarray=latax,
 title='%s %s' %(timett_str, titles[jj]),
 fix_aspect=False)

plot.plotAR(ardf,ax,lonax)
figure.show()

See also

utils.plot.Isofill, utils.plot.plot2().

One example output figure is shown below:

[image: _images/ar_1984-01-04_06:00.png]
Fig. 3 (a) The IVT field in kg/(m*s) at 1984-01-04 06:00 UTC over the North
Hemisphere. (b) the IVT reconstruction field at the same time point. (c)
the IVT anomaly field from the THR process at the same time point. In all
three subplots, the detected ARs are outlined in black contour. The AR axes
are drawn in green dashed lines.

Notebook example

An example of this process is given in this notebook [https://github.com/ihesp/IPART/blob/master/notebooks/3_detect_ARs.ipynb].

Find the axis from detected AR

Axis-finding in a planar graph framework

After Detect AR appearances from THR output, a binary mask \(I_k\) representing the spatial
region of each candidate AR is obtained. An axis is sought from this region
that summarizes the shape and orientation of the AR. A solution in a planar
graph framework is proposed here.

A directed planar graph is build using the coordinate pairs
\((\lambda_k, \phi_k)\) as nodes (see Figure Fig. 4 below).
At each node, directed
edges to its eight neighbors are created, so long as the moisture flux
component along the direction of the edge exceeds a user-defined fraction
(\(\epsilon\), see the PARAM_DICT in Input data) to the total
flux. The along-edge flux is defined as:

\[\begin{equation}
 f_{ij} = u_i \sin (\alpha) + v_i\cos(\alpha)
\end{equation}\]

where \(f_{ij}\) is the flux along the edge \(e_{ij}\) that points from node \(n_i\)
to node \(n_j\), and \(\alpha\) is the azimuth angle of \(e_{ij}\).

Therefore an edge can be created if \(f_{ij}/\sqrt{u_i^2+v_i^2} \geq \epsilon\).
It is advised to use a relatively small \(\epsilon=0.4\) is used, as the orientation of an AR
can deviate considerably from its moisture fluxes, and denser edges in the
graph allows the axis to capture the full extent of the AR.

[image: _images/fig16.png]
Fig. 4 Schematic diagram illustrating the planar graph build from the AR
pixels and horizontal moisture fluxes. Nodes are taken from
pixels within region \(I_k\), and are represented as circles. Red vectors
denote \(IVT\) vectors. The one at node \(n_i\) forms an angle \(\theta\)
with the x-axis, and has components \((u, v)\). Black arrows denote
directed edges between nodes, using an 8-connectivity neighborhood
scheme. The edge between node \(n_i\) and \(n_j\) is \(e_{ij}\), and forms
an azimuth
angle \(\alpha\) with the y-axis. \(w_{ij}\) is the weight attribute
assigned to edge \(e_{ij}\), and \(f_{ij}\) is along-edge moisture
flux.

The boundary pixels of the AR region are then found, labeled \(L_{k}\). The
trans-boundary moisture fluxes are compute as the dot product of the gradients
of \(I_k\) and \((u_k, v_k)\): \(\nabla I_k \cdot (u_k, v_k)\).

Then the boundary
pixels with net input moisture fluxes can be defined as:

\[L_{k, in} = \{ p \in L_k \mid (\nabla I_k \cdot (u_k, v_k))(p) > 0 \}\]

Similarly, boundary pixels
with net output moisture fluxes is the set

\[L_{k, out} = \{ p \in L_k \mid (\nabla I_k \cdot (u_k, v_k))(p) < 0 \}\]

These boundary pixels are colored in green and black, respectively, in Fig. 5.

[image: _images/fig2.png]
Fig. 5 Application of the axis finding algorithm on the AR in the North Pacific,
2007-Dec-1, 00 UTC. IVT within the AR is shown as colors, in
\(kg/(m \cdot s)\). The region of the AR (\(I_k\)) is shown as a collection
of gray dots, which constitute nodes of the directed graph. Edges among
neighboring nodes are created. A square marker is drawn at each boundary
node, and is filled with green if the boundary node has net input moisture
fluxes (\(n_i \in L_{k,in}\)), and black if it has net output moisture
fluxes (\(n_i \in L_{k,out}\)). The found axis is highlighted in
yellow.

For each pair of boundary nodes \(\{(n_i, n_j) \mid n_i \in L_{k, in},\, n_j \in
L_{k, out}\}\), a simple path (a path with no repeated nodes) is sought
that, among all possible paths that connect the entry node \(n_i\) and the exit
node \(n_j\), is the shortest in the sense that its path-integral of weights is the lowest.

The weight for edge \(e_{ij}\) is defined as:

\[w_{ij} = e^{-f_{ij}/A}\]

where \(f_{i,j}\) is the projected moisture flux along edge \(e_{i,j}\)
and \(A = 100\, kg/(m \cdot s)\) is a scaling factor.

This formulation
ensures a non-negative weight for each edge, and penalizes the inclusion of
weak edges when a weighted shortest path search is performed.

The Dijkstra path-finding algorithm [https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.single_source_dijkstra.html#networkx.algorithms.shortest_paths.weighted.single_source_dijkstra] is used to find this shortest path
\(p^*_{ij}\).

Then among all \(p^*_{ij}\) that connect all entry-exit pairs,
the one with the largest path-integral of along-edge fluxes is chosen as the AR
axis, as highlighted in yellow in Fig. 5.

It could be seen that various aspects of the physical processes of ARs are
encoded. The shortest path design gives a natural looking axis that is free
from discontinuities and redundant curvatures, and never shoots out of the AR
boundary. The weight formulation assigns smaller weights to edges with larger
moisture fluxes, “urging: the shortest path to pass through nodes with
greater intensity. The found axis is by design directed, which in certain
applications can provide the necessary information to orient the AR with
respect to its ambiance, such as the horizontal temperature gradient,
which relates to the low level jet by the thermal wind relation.

Usage in Python scripts

The following snippet shows the axis finding process:

from ipart.AR_detector import findARAxis
axis_list, axismask=findARAxis(quslab, qvslab, mask_list, costhetas,
 sinthetas, param_dict)

where:

	quslab, qvslab are the u- and v- component of integrated vapor fluxes at a given time point.

	mask_list is a list of binary masks denoting the region of an each found AR.

	sinthetas and costhetas are used to compute the azimuthal angles for each grid cell.

	param_dict is the parameter dictionary as defined in Input data.

See also

AR_detector.findARAxis(), AR_detector.maskToGraph(), AR_detector.getARAxis().

Dedicated Python script

No detected Python script is offered for this process, as it is performed in the
AR_detector.findARsGen() function.

Notebook example

An example of this process is given in this notebook [https://github.com/ihesp/IPART/blob/master/notebooks/3_detect_ARs.ipynb].

Track ARs at individual time steps to form tracks

The modified Hausdorff distance definition

After the Detect AR appearances from THR output process, assume we have detected

	\(n\) ARs at time \(t\), and

	\(m\) ARs at time \(t+1\).

There are theoretically \(n \times m\) possible associations to link these two groups of ARs. Of
cause not all of them are meaningful. The rules that are applied in the
association process are:

	The nearest neighbor link method: for any AR at time \(t\), the nearest AR at time \(t+1\) “wins” and is associated with it, subject to that:

	the inter-AR distance (H) is \(\le 1200 \, km\).

	no merging or splitting is allowed, any AR at time \(t\) can only be linked to one AR at time \(t+1\), similarly, any AR at time \(t+1\) can only be linked to one AR at time \(t\).

	after all associations at any give time point have been created, any left-over AR at time \(t+1\) forms a track on their own, and waits to be associated in the next iteration between \(t+1\) and \(t+2\).

	any track that does not get updated during the \(t-(t+1)\) process terminates. This assumes that no gap in the track is allowed.

The remaining important question is how to define that inter-AR distance (H). Here we adopt a modified Hausdorff distance definition:

\[H(A,B) \equiv min \{ h_f(A,B), h_b(A,B) \}\]

where \(H(A, B)\) is the modified Hausdorff distance from track A to track B,
\(h_f(A,B)\) is the forward Hausdorff distance from A to B, and \(h_b(A,B)\) the backward Hausdorff distance from A to B. They are defined, respectively, as:

\[h_f(A, B) \equiv \operatorname*{max}_{a \in A} \{ \operatorname*{min}_{b \in B} \{
 d_g(a,b) \} \}\]

namely, the largest great circle distance of all distances from a point in A to the
closest point in B. And the backward Hausdorff distance is:

\[h_b(A, B) \equiv \operatorname*{max}_{b \in B} \{ \operatorname*{min}_{a \in A} \{
 d_g(a,b) \} \}\]

Note that in general \(h_f \neq h_b\). Unlike the standard definition of
Hausdorff distance that takes the maximum of \(h_f\) and \(h_b\), we take the
minimum of the two.

The rationale behind this modification is that merging/splitting of ARs mostly
happen in an end-to-end manner, during which a sudden increase/decrease in the
length of the AR induce misalignment among the anchor points. Specifically,
merging (splitting) tends to induce large backward (forward) Hausdorff
distance. Therefore \(min \{ h_f(A,B), h_b(A,B) \}\) offers a more faithful
description of the spatial closeness of ARs. For merging/splitting events in a
side-to-side manner, this definition works just as well.

The nearest neighbor link method

To link AR records to form a track, a nearest neighbor method is used that the
two AR axes found in consecutive time steps with a Hausdorff distance \(\leq
1200 \, km\) are linked, with an exclusive preference to the smallest Hausdorff
distance.

Formally, suppose \(n\) tracks have been found at \(t=t\; :A = \{a_1,
a_2, \cdots, a_n\}\), and \(t=t+1\) has \(m\) new records: \(B = \{ b_1, b_2,
\cdots, b_m \}\). The Hausdorff distances between all pairs of possible
associations form a distance matrix:

\[\begin{split}M = \begin{bmatrix}
 H(a_1, b_1) & H(a_1, b_2) & \cdots & H(a_1, b_m) \\
 H(a_2, b_1) & H(a_2, b_2) & \cdots & H(a_2, b_m) \\
 \vdots & \vdots & \vdots & \vdots \\
 H(a_n, b_1) & H(a_n, b_2) & \cdots & H(a_n, b_m) \\
\end{bmatrix}\end{split}\]

Then Algorithm shown in Fig. 6 is called with these arguments:

\[(A=A, B=B, M=M, H^*=1200\, km, R^-=[\,], C^-=[\,])\]

[image: _images/nn.png]
Fig. 6 Algorithm for the nearest neighbor link method.

The algorithm iteratively links two AR
records with the smallest distance, so long as the distance does not exceed a
given threshold \(H^*\).

It ensures that no existing track connects to more than
one new records, and no new record connects to more than one existing tracks.
After this, any left-over records in \(B\) form a new track on their own. Then
the same procedure repeats with updated time \(t:=t+1\). Tracks that do not
get any new record can be removed from the stack list, which only maintains
a few active tracks at any given time.
Therefore the complexity does not scale with time.

Note

One can use 3 consecutive calls of the above algorithm, with different input arguments, to achieve merging and splitting in the tracks.

Input data

This step takes as inputs the AR records detected at individual time steps as
computed in Detect AR appearances from THR output.

The tracker parameters used:

Int, hours, gap allowed to link 2 records. Should be the time resolution of
the data.
TIME_GAP_ALLOW=6

tracking scheme. 'simple': all tracks are simple paths.
'full': use the network scheme, tracks are connected by their joint points.
TRACK_SCHEME='simple' # 'simple' | 'full'

int, max Hausdorff distance in km to define a neighborhood relationship
MAX_DIST_ALLOW=1200 # km

int, min duration in hrs to keep a track.
MIN_DURATION=24

int, min number of non-relaxed records in a track to keep a track.
MIN_NONRELAX=1

whether to plot linkage schematic plots or not
SCHEMATIC=True

Usage in Python scripts

The tracking process is handled by the AR_tracer.trackARs() function:

from ipart.AR_tracer import trackARs
from ipart.AR_tracer import readCSVRecord

ardf=readCSVRecord(RECORD_FILE)
track_list=trackARs(ardf, TIME_GAP_ALLOW, MAX_DIST_ALLOW,
 track_scheme=TRACK_SCHEME, isplot=SCHEMATIC, plot_dir=plot_dir)

where

	RECORD_FILE is the path to the csv file saving the individual AR records. Refer to this notebook [https://github.com/ihesp/IPART/blob/master/notebooks/3_detect_ARs.ipynb] for more information on the creation of this file.

	ardf is a pandas.DataFrame object containing the AR records at individual time points.

	track_list is a list of AR objects, each stores a sequence of AR records that form a single track. The data attribute of the AR object is a pandas.DataFrame object, with the same columns as shown in AR records DataFrame.

After this, one can optionally perform a filtering on the obtained tracks,
using AR_tracer.filterTracks(), to remove, for instance, tracks
that do not last for more than 24 hours:

from ipart.AR_tracer import filterTracks
track_list=filterTracks(track_list, MIN_DURATION, MIN_NONRELAX)

Example output

The resultant AR track can be visualized using the following snippet:

from ipart.utils import plot
import cartopy.crs as ccrs

latax=np.arange(0, 90)
lonax=np.arange(80, 440) # degree east, shifted by 80 to ensure monotonically increasing axis

plot_ar=track_list[6] # plot the 7th track in list

figure=plt.figure(figsize=(12,6),dpi=100)
ax=figure.add_subplot(111, projection=ccrs.PlateCarree())
plotplotARTrack(plot_ar,latax,lonax,ax,full=True)

See also

utils.plot.plotARTrack().

The output figure looks like Fig. 7 below.

[image: _images/ar_track_198424.png]
Fig. 7 Locations of a track labelled “198424” found in year 1984. Black to yellow color scheme indicates
the evolution.

Dedicated Python script

You can use the scripts/trace_ARs.py script for AR tracking process in production.

Note

Unlike the AR occurrence detection process, this tracking process is time-dependent and therefore can not be paralleized. Also, if you divide the detection process into batches, e.g. one for each year, you may want to combine the output csv records into one big data file, and perform the tracking on this combined data file. This would prevent a track lasting from the end of one year into the next from being broken into 2.

Notebook example

An example of this process is given in this notebook [https://github.com/ihesp/IPART/blob/master/notebooks/4_track_ARs.ipynb].

Documentation page for thr.py

Perform THR computation on IVT data

Author: guangzhi XU (xugzhi1987@gmail.com)
Update time: 2020-07-22 09:58:36.

	
thr.THR(ivtNV, kernel, oroNV=None, high_terrain=600, verbose=True)

	Perform THR filtering process on 3d data

	Parameters

	
	ivtNV (NCVAR) – 3D or 4D input IVT data, with dimensions
(time, lat, lon) or (time, level, lat, lon).

	kernel (list or tuple) – list/tuple of integers specifying the shape of
the kernel/structuring element used in the gray erosion process.

	Keyword Arguments

	
	oroNV (NCVAR or None) – 2D array, surface orographic data in meters.
This optional surface height info is used to perform a separate
reconstruction computation for areas with high elevations, and
the results can be used to enhance the continent-penetration
ability of landfalling ARs. Sensitivity in landfalling ARs is
enhanced, other areas are not affected. Needs to have compatible
(lat, lon) shape as <ivt>.
If None, omit this process and treat areas with different heights
all equally.

New in v2.0.

	high_terrain (float) – minimum orographic height (in m) to define as high
terrain area, within which a separate reconstruction is performed.
Only used if <oroNV> is not None.

New in v2.0.

	verbose (bool) – print some messages or not.

	Returns

	ivtNV (NCVAR) – 3D or 4D array, input <ivt>.
ivtrecNV (NCVAR): 3D or 4D array, the reconstruction component from the

THR process.

	ivtanoNV (NCVAR): 3D or 4D array, the difference between input <ivt>

	and <ivtrecNV>.

	
thr.getAttrDict(ref_var, component)

	Prepare a metadata dict from a reference variable

	Parameters

	
	ref_var (ipart.utils.NCVAR) – NCVAR obj from which meta is obtained
and modified.

	component (str) – ‘reconstruction’ or ‘anomaly’. Strings as modifiers
to modify attributes in <ref_var>.

	Returns

	attdict (dict) – attribute dictionary.

	
thr.rotatingTHR(filelist, varin, kernel, outputdir, oroNV=None, selector=None, high_terrain=600, verbose=True)

	Compute time filtering on data in different files.

	Parameters

	
	filelist (list) – list of abs paths to data files. User is responsible to
make sure files in list have correct chronological order.
Note that time axis in data files should be the 1st axis.

	varin (str) – variable id in files.

	kernel (list or tuple) – list/tuple of integers specifying the shape of
the kernel/structuring element used in the gray erosion process.

	selector (utils.funcs.Selector) – selector obj to select subset of data.

	outputdir (str) – path to folder to save outputs.

	Keyword Arguments

	
	oroNV (NCVAR) – 2D array, surface orographic data in meters.
This additional surface height info is used to perform a separate
reconstruction computation for areas with high elevations, and
the results can be used to enhance the continent-penetration
ability of landfalling ARs. Sensitivity in landfalling ARs is
enhanced, other areas are not affected. Needs to have compatible
shape as <ivt>.
If None, omit this process and treat areas with different heights
all equally.

New in v2.0.

	high_terrain (float) – minimum orographic height to define as high
terrain area, within which a separate reconstruction is performed.
Only used if <oroNV> is not None.

New in v2.0.

	verbose (bool) – print some messages or not.

Designed to perform temporal filtering on data that are too large to fit
into memory, e.g. high-resolution data across multiple decades.

Function will read in 2 files at once, call the filtering function on the
concatenated data, and shift 1 step to the next 2 files. If at the begining,
pad 0s to the left end. If in the mid, pad filtered data in the mid of
the concatenated data in the previous step. If at the end, pad 0s to
the right end.

The filtering function <func> is assumed to apply a filtering window with
odd length n, and truncates (n-1)/2 points from both ends. If the function
doesn’t truncate data, will raise an exception.

Documentation page for AR_detector.py

AR detection functions.

Author: guangzhi XU (xugzhi1987@gmail.com)
Update time: 2020-07-22 09:27:22.

	
AR_detector.applyCropIdx(slab, cropidx)

	Cut out a bounding box from given 2d slab given corner indices

	Parameters

	
	slab (NCVAR or ndarray) – 2D array to cut a box from.

	cropidx (tuple) – (y, x) coordinate indices, output from cropMask().

	Returns

	cropslab (NCVAR or ndarray) –

	2D sub array cut from <slab> using

	<cropidx> as boundary indices.

	
AR_detector.areaFilt(mask, area, min_area=None, max_area=None, zonal_cyclic=False)

	Filter AR binary masks by region areas

	Parameters

	
	mask (ndarray) – 2D binary mask with detected objects shown as 1s.

	area (ndarray) – 2D map showing grid cell areas in km^2.

	Keyword Arguments

	
	min_area (float or None) – if not None, minimum area to filter objects
in <mask>.

	max_area (float or None) – if not None, maximum area to filter objects
in <mask>.

	zonal_cyclic (bool) – if True, treat zonal boundary as cyclic.

	Returns

	result (ndarray) – 2D binary mask with objects area-filtered.

	
AR_detector.cart2Spherical(x, y, z, shift_lon)

	Convert Cartesian to spherical coordiantes
:param x,y,z: x-, y- and z- coordiantes.
:type x,y,z: float
:param shift_lon: longitude to shift so the longitude dimension

starts from this number.

	Returns

	result (ndrray) –

	1x3 array, the columns are the lat-, lon- and r-

	coordinates. r- coordinates are all 1s (unit sphere).

	
AR_detector.cart2Wind(vs, lats, lons)

	Convert winds in Cartesian coordinates to u,v, inverse to wind2Cart.
:param vs: Cartesian representation of the horizontal

winds.

	Parameters

	lats,lons (float or ndarray) – latitude and longitude coordinates
corresponding to the wind vectors given by <u> and <v>.

	Returns

	u,v (float or ndarray) – u- and v- components of horizontal winds.

	
AR_detector.checkCyclic(mask)

	Check binary mask is zonally cyclic or not

	Parameters

	mask (ndarray) – 2d binary array, with 1s denoting existance of
a feature.

	Returns

	result (bool) –

	True if feature in <mask> is zonally cyclic, False

	otherwise.

	
AR_detector.computeTheta(p1, p2)

	Tangent line to the arc |p1-p2|

	Parameters

	p1,p2 (float) – (lat,lon) coordinates

	Returns

	theta (float) –

	unit vector tangent at point <p1> pointing at <p2>

	on unit sphere.

	
AR_detector.cropMask(mask, edge=4)

	Cut out a bounding box around mask==1 areas

	Parameters

	
	mask (ndarray) – 2D binary map showing the location of an AR with 1s.

	edge (int) – number of pixels as edge at 4 sides.

	Returns

	mask[y1 –

	y2,x1:x2] (ndarray): a sub region cut from <mask> surrouding

	regions with value=1.

	(yy,xx): y-, x- indices of the box of the cut region. Can later by

	used in applyCropIdx(new_slab, (yy,xx)) to crop out the same
region from a new array <new_slab>.

	
AR_detector.crossSectionFlux(mask, quslabNV, qvslabNV, axis_rdp)

	Compute setion-wise orientation differences and cross-section fluxes
in an AR

	Parameters

	
	mask (ndarray) – CROPPED (see cropMask and applyCropIdx) 2D binary map
showing the location of an AR with 1s.

	quslab (NCVAR) – CROPPED (n * m) 2D array of u-flux, in kg/m/s.

	qvslab (NCVAR) – CROPPED (n * m) 2D array of v-flux, in kg/m/s.

	axis_rdp (ndarray) – Nx2 array storing the (lat, lon) coordinates of
rdp-simplified AR axis.

	Returns

	angles (ndarray) –

	2D map with the same shape as <mask>, showing

	section-wise orientation differences between horizontal flux (as in
<quslab>, <qvslab>) and the AR axis of that section. In degrees.
Regions outside of AR (0s in <mask>) are masked.

anglesmean (float): area-weighted averaged of <angles> inside <mask>.
crossflux (ndarray): 2D map with the same shape as <mask>,

the section-wise cross-section fluxes in the AR, defined as the
projection of fluxes onto the AR axis, i.e. flux multiplied by the
cos of <angles>.

	seg_thetas (list): list of (x, y, z) Cartesian coordinates of the

	tangent vectors along section boundaries.

	
AR_detector.cyclicLabel(mask, connectivity=1, iszonalcyclic=False)

	Label connected region, zonally cyclic version

	Parameters

	mask (ndarray) – 2d binary mask with 1s denoting feature regions.

	Keyword Arguments

	
	connectivity (int) – 1 or 2 connectivity. 2 probaby won’t work
for zonally cyclic labelling.

	iszonalcyclic (bool) – doing zonally cyclic labelling or not.
If False, call skimage.measure.label().
If True, call skimage.measure.label() for initial labelling, then
shift the map zonally by half the zonal length, do another
measure.label() to find zonally linked regions. Then use this
to update the original labels.

	Returns

	result (ndarray) –

	2d array with same shape as <mask>. Each connected

	region in <mask> is given an int label.

	
AR_detector.determineThresLow(anoslab, sill=0.8)

	Determine the threshold for anomalous IVT field, experimental

	Parameters

	anoslab (ndarray) – (n * m) 2D anomalous IVT slab, in kg/m/s.

	Keyword Arguments

	sill (float) – float in (0, 1). Fraction of max score to define as the
1st time the score is regarded as reaching stable level.

	Returns

	result (float) – determined lower threshold.

	Method of determining the threshold:

	1. make a loop through an array of thresholds from 1 to the
99th percentile of <ivtano>.
2. at each level, record the number of pixels > threshold.
3. after looping, pixel number counts will have a curve with a

lower-left elbow. Compute the product of number counts and
thresholds P. P will have a peak value around the elbow.

	choose the 1st time P reaches the 80% of max(P), and pick
the corresponding threshold as result.

Largely empirical, but seems to work good on MERRA2 IVT results.

	
AR_detector.findARAxis(quslab, qvslab, armask_list, costhetas, sinthetas, param_dict, verbose=True)

	Find AR axis

	Parameters

	
	quslab (ndarray) – (n * m) 2D u-flux slab, in kg/m/s.

	qvslab (ndarray) – (n * m) 2D v-flux slab, in kg/m/s.

	armask_list (list) – list of 2D binary masks, each with the same shape
as <quslab> etc., and with 1s denoting the location of a found AR.

	costhetas (ndarray) – (n * m) 2D slab of grid cell shape:
cos=dx/sqrt(dx^2+dy^2).

	sinthetas (ndarray) – (n * m) 2D slab of grid cell shape:
sin=dy/sqrt(dx^2+dy^2).

	param_dict (dict) – a dict containing parameters controlling the
detection process. Keys of the dict:
‘thres_low’, ‘min_area’, ‘max_area’, ‘max_isoq’, ‘max_isoq_hard’,
‘min_lat’, ‘max_lat’, ‘min_length’, ‘min_length_hard’, ‘rdp_thres’,
‘fill_radius’, ‘single_dome’, ‘max_ph_ratio’, ‘edge_eps’.
See the doc string of findARs() for more.

	Keyword Arguments

	verbose (bool) – print some messages or not.

	Returns

	axes (list) –

	list of AR axis coordinates. Each coordinate is defined

	as a Nx2 ndarray storing (y, x) indices of the axis
(indices defined in the matrix of corresponding mask
in <armask_list>.)

	axismask (ndarray): 2D binary mask showing all axes in <axes> merged

	into one map.

New in v2.0.

	
AR_detector.findARs(ivt, ivtrec, ivtano, qu, qv, lats, lons, times=None, ref_time='days since 1900-01-01', thres_low=1, min_area=500000.0, max_area=18000000.0, min_LW=2, min_lat=20, max_lat=80, min_length=2000, min_length_hard=1500, rdp_thres=2, fill_radius=None, single_dome=False, max_ph_ratio=0.6, edge_eps=0.4, zonal_cyclic=False, verbose=True)

	Find ARs from THR results, get all results in one go.

	Parameters

	
	ivt (ndarray) – 3D or 4D input IVT data, with dimensions
(time, lat, lon) or (time, level, lat, lon).

	ivtrec (ndarray) – 3D or 4D array, the reconstruction component from the
THR process.

	ivtano (ndarray) – 3D or 4D array, the difference between input <ivt>
and <ivtrec>.

	qu (ndarray) – 3D or 4D array, zonal component of integrated moisture
flux.

	qv (ndarray) – 3D or 4D array, meridional component of integrated
moisture flux.

	lats (ndarray) – 1D, latitude coordinates, the length needs to be the
same as the lat dimension of <ivt>.

	lons (ndarray) – 1D, longitude coordinates, the length needs to be the
same as the lon dimension of <ivt>.

	Keyword Arguments

	
	times (list or array) – time stamps of the input data as a list of strings,
e.g. [‘2007-01-01 06:00:00’, ‘2007-01-01 12:00’, …].
Needs to have the same length as the time dimension of <ivt>.
If None, default to create a dummy 6-hourly time axis, using
<ref_time> as start, with a length as the time dimension of <ivt>.

	ref_time (str) – reference time point to create dummy time axis, if
no time stamps are given in <times>.

	thres_low (float or None) – kg/m/s, define AR candidates as regions
>= this anomalous ivt level. If None is given, compute a
threshold based on anomalous ivt data in <ivtano> using an
empirical method:

1. make a loop through an array of thresholds from 1 to the
99th percentile of <ivtano>.
2. at each level, record the number of pixels > threshold.
3. after looping, pixel number counts will have a curve with a

lower-left elbow. Compute the product of number counts and
thresholds P. P will have a peak value around the elbow.

	choose the 1st time P reaches the 80% of max(P), and pick
the corresponding threshold as result.

	min_area (float) – km^2, drop AR candidates smaller than this area.

	max_area (float) – km^2, drop AR candidates larger than this area.

	min_LW (float) – minimum length/width ratio.

	min_lat (float) – degree, exclude systems whose centroids are lower
than this latitude. NOTE this is the absolute latitude for both
NH and SH. For SH, systems with centroid latitude north of
- min_lat will be excluded.

	max_lat (float) – degree, exclude systems whose centroids are higher
than this latitude. NOTE this is the absolute latitude for both
NH and SH. For SH, systems with centroid latitude south of
- max_lat will be excluded.

	min_length (float) – km, ARs shorter than this length is treated as
relaxed.

	min_length_hard (float) – km, ARs shorter than this length is discarded.

	rdp_thres (float) – degree lat/lon, error when simplifying axis using
rdp algorithm.

	fill_radius (int or None) – number of grids as radius to fill small
holes in AR contour. If None, computed as

max(1,int(4*0.75/RESO))

where RESO is the approximate resolution in degrees of lat/lon,
estimated from <lat>, <lon>.

	single_dome (bool) – do peak partition or not, used to separate
systems that are merged together with an outer contour.

	max_ph_ratio (float) – max prominence/height ratio of a local peak.
Only used when single_dome=True

	edge_eps (float) – minimal proportion of flux component in a direction
to total flux to allow edge building in that direction.

	zonal_cyclic (bool) – if True, treat the data as zonally cyclic (e.g.
entire hemisphere or global). ARs covering regions across the
longitude bounds will be correctly treated as one. If your data
is not zonally cyclic, or a zonal shift of the data can put the
domain of interest to the center, consider doing the shift and
setting this to False, as it will save computations.

	verbose (bool) – print some messages or not.

	Returns

	time_idx (list) – indices of the time dimension when any AR is found.
labels_allNV (NCVAR): 3D array, with dimension

(time, lat, lon). At each time slice, a unique int label is assign
to each detected AR at that time, and the AR region is filled
out with the label value in the (lat, lon) map.

	angles_allNV (NCVAR): 3D array showing orientation

	differences between AR axes and fluxes, for all ARs. In degrees.

	crossfluxes_allNV (NCVAR): 3D array showing cross-

	sectional fluxes in all ARs. In kg/m/s.

	result_df (DataFrame): AR record table. Each row is an AR, see code

	in getARData() for columns.

See also

	findARsGen(): generator version, yields results at time points

	separately.

	
AR_detector.findARsGen(ivt, ivtrec, ivtano, qu, qv, lats, lons, times=None, ref_time='days since 1900-01-01', thres_low=1, min_area=500000.0, max_area=18000000.0, min_LW=2, min_lat=20, max_lat=80, min_length=2000, min_length_hard=1500, rdp_thres=2, fill_radius=None, single_dome=False, max_ph_ratio=0.6, edge_eps=0.4, zonal_cyclic=False, verbose=True)

	Find ARs from THR results, generator version

	Parameters

	
	ivt (ndarray) – 3D or 4D input IVT data, with dimensions
(time, lat, lon) or (time, level, lat, lon).

	ivtrec (ndarray) – 3D or 4D array, the reconstruction
component from the THR process.

	ivtano (ndarray) – 3D or 4D array, the difference between
input <ivt> and <ivtrec>.

	qu (ndarray) – 3D or 4D array, zonal component of
integrated moisture flux.

	qv (ndarray) – 3D or 4D array, meridional component of
integrated moisture flux.

	lats (ndarray) – 1D, latitude coordinates, the length needs to be the
same as the lat dimension of <ivt>.

	lons (ndarray) – 1D, longitude coordinates, the length needs to be the
same as the lon dimension of <ivt>.

	Keyword Arguments

	
	times (list or array) – time stamps of the input data as a list of strings,
e.g. [‘2007-01-01 06:00:00’, ‘2007-01-01 12:00’, …].
Needs to have the same length as the time dimension of <ivt>.
If None, default to create a dummy 6-hourly time axis, using
<ref_time> as start, with a length as the time dimension of <ivt>.

	ref_time (str) – reference time point to create dummy time axis, if
no time stamps are given in <times>.

	thres_low (float or None) – kg/m/s, define AR candidates as regions
>= this anomalous ivt level. If None is given, compute a
threshold based on anomalous ivt data in <ivtano> using an
empirical method:

1. make a loop through an array of thresholds from 1 to the
99th percentile of <ivtano>.
2. at each level, record the number of pixels > threshold.
3. after looping, pixel number counts will have a curve with a

lower-left elbow. Compute the product of number counts and
thresholds P. P will have a peak value around the elbow.

	choose the 1st time P reaches the 80% of max(P), and pick
the corresponding threshold as result.

	min_area (float) – km^2, drop AR candidates smaller than this area.

	max_area (float) – km^2, drop AR candidates larger than this area.

	min_LW (float) – minimum length/width ratio.

	min_lat (float) – degree, exclude systems whose centroids are lower
than this latitude. NOTE this is the absolute latitude for both
NH and SH. For SH, systems with centroid latitude north of
- min_lat will be excluded.

	max_lat (float) – degree, exclude systems whose centroids are higher
than this latitude. NOTE this is the absolute latitude for both
NH and SH. For SH, systems with centroid latitude south of
- max_lat will be excluded.

	min_length (float) – km, ARs shorter than this length is treated as
relaxed.

	min_length_hard (float) – km, ARs shorter than this length is discarded.

	rdp_thres (float) – degree lat/lon, error when simplifying axis using
rdp algorithm.

	fill_radius (int or None) – number of grids as radius to fill small
holes in AR contour. If None, computed as

max(1,int(4*0.75/RESO))

where RESO is the approximate resolution in degrees of lat/lon,
estimated from <lat>, <lon>.

	single_dome (bool) – do peak partition or not, used to separate
systems that are merged together with an outer contour.

	max_ph_ratio (float) – max prominence/height ratio of a local peak.
Only used when single_dome=True

	edge_eps (float) – minimal proportion of flux component in a direction
to total flux to allow edge building in that direction.

	zonal_cyclic (bool) – if True, treat the data as zonally cyclic (e.g.
entire hemisphere or global). ARs covering regions across the
longitude bounds will be correctly treated as one. If your data
is not zonally cyclic, or a zonal shift of the data can put the
domain of interest to the center, consider doing the shift and
setting this to False, as it will save computations.

	verbose (bool) – print some messages or not.

	Returns

	ii (int) – index of the time dimension when any AR is found.
timett_str (str): time when any AR is found, in string format.
labelsNV (NCVAR): 2D array, with dimension

(lat, lon). A unique int label is assign
to each detected AR at the time, and the AR region is filled
out with the label value in the (lat, lon) map.

	anglesNV (NCVAR): 2D array showing orientation

	differences between AR axes and fluxes, for all ARs. In degrees.

	crossfluxesNV (NCVAR): 2D array showing cross-

	sectional fluxes in all ARs. In kg/m/s.

	ardf (DataFrame): AR record table. Each row is an AR, see code

	in getARData() for columns.

See also

findARs(): collect and return all results in one go.

New in v2.0.

	
AR_detector.getARAxis(g, quslab, qvslab, mask)

	Find AR axis from AR region mask

	Parameters

	
	g (networkx.DiGraph) – directed planar graph constructed from AR mask
and flows. See maskToGraph().

	quslab (ndarray) – 2D map of u-flux.

	qvslab (ndarray) – 2D map of v-flux.

	mask (ndarray) – 2D binary map showing the location of an AR with 1s.

	Returns

	path (ndarray) –

	Nx2 array storing the AR axis coordinate indices in

	(y, x) format.

	axismask (ndarray): 2D binary map with same shape as <mask>, with

	grid cells corresponding to coordinates in <path>
set to 1s.

	
AR_detector.getARData(slab, quslab, qvslab, anoslab, quano, qvano, areas, lats, lons, mask_list, axis_list, timestr, param_dict)

	Fetch AR related data

	Parameters

	
	slab (ndarray) – (n * m) 2D array of IVT, in kg/m/s.

	quslab (ndarray) – (n * m) 2D array of u-flux, in kg/m/s.

	qvslab (ndarray) – (n * m) 2D array of v-flux, in kg/m/s.

	anoslab (ndarray) – (n * m) 2D array of IVT anomalies, in kg/m/s.

	quano (ndarray) – (n * m) 2D array of u-flux anomalies, in kg/m/s.

	qvano (ndarray) – (n * m) 2D array of v-flux anomalies, in kg/m/s.

	areas (ndarray) – (n * m) 2D grid cell area slab, in km^2.

	lats (ndarray) – 1d array, latitude coordinates.

	lons (ndarray) – 1d array, longitude coordinates.

	mask_list (list) – list of 2D binary masks, each with the same shape as
<anoslab> etc., and with 1s denoting the location of a
found AR.

	axis_list (list) – list of AR axis coordinates. Each coordinate is defined
as a Nx2 ndarray storing (y, x) indices of the axis
(indices defined in the matrix of corresponding mask
in <masks>.)

	timestr (str) – string of time snap.

	param_dict (dict) – a dict containing parameters controlling the
detection process. Keys of the dict:
‘thres_low’, ‘min_area’, ‘max_area’, ‘max_isoq’, ‘max_isoq_hard’,
‘min_lat’, ‘max_lat’, ‘min_length’, ‘min_length_hard’, ‘rdp_thres’,
‘fill_radius’, ‘single_dome’, ‘max_ph_ratio’, ‘edge_eps’.
See the doc string of findARs() for more.

	Returns

	labelsNV (NCVAR) –

	(n * m) 2D int map showing all ARs at current time.

	Each AR is labeled by an int label, starting from 1. Background is
filled with 0s.

	anglesNV (NCVAR): (n * m) 2D map showing orientation differences

	between AR axes and fluxes, for all ARs. In degrees.

	crossfluxesNV (NCVAR): (n * m) 2D map showing cross- sectional fluxes

	in all ARs. In kg/m/s.

	df (pandas.DataFrame): AR record table. Each row is an AR, see code

	below for columns.

	
AR_detector.getNormalVectors(point_list, idx)

	Get the normal vector and the tagent vector to the plane dividing
2 sections along the AR axis.

	Parameters

	
	point_list (list) – list of (lat, lon) coordinates.

	idx (int) – index of the point in <point_list>, denoting the point
in question.

	Returns

	normi (tuple) –

	the (x, y, z) Cartesian coordinate of the unit

	normal vector, at the point denoted by <idx>,
on the Earth surface. This is the normal vector to
the plane spanned by the vector Theta and P.
Where P is the vector pointing to the point in
question (point_list[idx]), and Theta is the
tangent vector evenly dividing the angle formed by
<P,P1>, and <P,P2>. Where P1, P2 are 2 points on
both side of P.

	thetai (tuple): the (x, y, z) Cartesian coordinate of the tangent

	vector Theta above.

	
AR_detector.insertCropSlab(shape, cropslab, cropidx)

	Insert the cropped sub-array back to a larger empty slab

	Parameters

	
	shape (tuple) – (n, m) size of the larger slab.

	cropslab (ndarray) – 2D array to insert.

	cropidx (tuple) – (y, x) coordinate indices, output from cropMask(),
defines where <cropslab> will be inserted into.

	Returns

	result (ndarray) –

	2D slab with shape (n, m), an empty array with a

	box at <cropidx> replaced with data from <cropslab>.

	
AR_detector.maskToGraph(mask, quslab, qvslab, costhetas, sinthetas, edge_eps, connectivity=2)

	Create graph from AR mask

	Parameters

	
	mask (ndarray) – 2D binary map showing the location of an AR with 1s.

	quslab (ndarray) – 2D map of u-flux.

	qvslab (ndarray) – 2D map of v-flux.

	costhetas (ndarray) – (n * m) 2D slab of grid cell shape:
cos=dx/sqrt(dx^2+dy^2).

	sinthetas (ndarray) – (n * m) 2D slab of grid cell shape:
sin=dy/sqrt(dx^2+dy^2).

	edge_eps (float) – float in (0,1), minimal proportion of flux component
in a direction to total flux to allow edge building
in that direction. Defined in Global preamble.

	connectivity (int) – 1 or 2. 4- or 8- connectivity in defining neighbor-
hood relationship in a 2D square grid.

	Returns

	g (networkx.DiGraph) –

	directed planar graph constructed from AR mask

	and flows.

	
AR_detector.partPeaks(cropmask, cropidx, orislab, area, min_area, max_ph_ratio, fill_radius)

	Separate local maxima by topographical prominence, watershed version

	Parameters

	
	cropmask (ndarray) – 2D binary array, defines regions of local maxima.

	cropidx (tuple) – (y, x) coordinate indices, output from cropMask().

	orislab (ndarray) – 2D array, giving magnitude/height/intensity values
defining the topography.

	area (ndarray) – (n * m) 2D grid cell area slab, in km^2.

	min_area (float) – km^2, drop AR candidates smaller than this area.

	max_ph_ratio (float) – maximum peak/height ratio. Local peaks with
a peak/height ratio larger than this value is
treated as an independent peak.

	fill_radius (int) – number of grids as radius to further separate peaks.

	Returns

	result (ndarray) –

	2D binary array, similar as the input <cropmask>

	but with connected peaks (if any) separated so that
each connected region (with 1s) denotes an
independent local maximum.

	
AR_detector.partPeaksOld(cropmask, cropidx, orislab, max_ph_ratio)

	Separate local maxima by topographical prominence

	Parameters

	
	cropmask (ndarray) – 2D binary array, defines regions of local maxima.

	cropidx (tuple) – (y, x) coordinate indices, output from cropMask().

	orislab (ndarray) – 2D array, giving magnitude/height/intensity values
defining the topography.

	max_ph_ratio (float) – maximum peak/height ratio. Local peaks with
a peak/height ratio larger than this value is
treated as an independent peak.

	Returns

	result (ndarray) –

	2D binary array, similar as the input <cropmask>

	but with connected peaks (if any) separated so that
each connected region (with 1s) denotes an
independent local maximum.

	
AR_detector.plotGraph(graph, ax=None, show=True)

	Helper func to plot the graph of an AR coordinates. For debugging.
:param graph: networkx Graph obj to visualize.
:type graph: networkx.Graph

	Keyword Arguments

	
	ax (matplotlib axis obj) – axis to plot on. If None, create a new one.

	show (bool) – whether to show the plot or not.

	
AR_detector.prepareMeta(lats, lons, times, ntime, nlat, nlon, ref_time='days since 1900-01-01', verbose=True)

	Prepare metadata for AR detection function calls

	Parameters

	
	lats (ndarray) – 1D, latitude coordinates, the length needs to equal
<nlat>.

	lons (ndarray) – 1D, longitude coordinates, the length needs to equal
<nlon>.

	times (list or array) – time stamps of the input data as a list of strings,
e.g. [‘2007-01-01 06:00:00’, ‘2007-01-01 12:00’, …].
Needs to have the a length of <ntime>.

	ntime (int) – length of the time axis, should equal the length of
<times>.

	nlat (int) – length of the latitude axis, should equal the length of
<lats>.

	nlon (int) – length of the longitude axis, should equal the length of
<lons>.

	Keyword Arguments

	
	ref_time (str) – reference time point to create time axis.

	verbose (bool) – print some messages or not.

	Returns

	timeax (list) – a list of datetime objs.
areamap (ndarray): grid cell areas in km^2, with shape (<nlat> x <nlon>).
costhetas (ndarray): ratios of dx/sqrt(dx^2 + dy^2) for all grid cells.

with shape (<nlat> x <nlon>).

	sinthetas (ndarray): ratios of dy/sqrt(dx^2 + dy^2) for all grid cells.

	with shape (<nlat> x <nlon>).

	reso (float): (approximate) horizontal resolution in degrees of lat/lon

	estimate from <lats> and <lons>.

New in v2.0.

	
AR_detector.save2DF(result_dict)

	Save AR records to a pandas DataFrame

	Parameters

	result_dict (dict) – key: time str in ‘yyyy-mm-dd hh:00’
value: pandas dataframe. See getARData().

	Returns

	result_df (pandas.DataFrame) –

	AR record table containing records

	from multiple time steps sorted by
time.

	
AR_detector.spherical2Cart(lat, lon)

	Convert spherical to Cartesian coordiantes
:param lat,lon: latitude and longitude coordinates.
:type lat,lon: float or ndarray

	Returns

	result (ndarray) –

	Nx3 array, the columns are the x-, y- and z-

	coordinates.

	
AR_detector.uvDecomp(u0, v0, i1, i2)

	Decompose background-transient components of u-, v- fluxes

	Parameters

	
	u0 (ndarray) – nd array of total u-flux.

	v0 (ndarray) – nd array of total v-flux.

	i1 (ndarray) – nd array of the reconstruction component of IVT.

	i2 (ndarray) – nd array of the anomalous component of IVT (i2 = IVT - i1).

	Returns

	u1 (ndarray) –

	nd array of the u-flux component corresponding to <i1>,

	i.e. the background component.

	v1 (ndarray): nd array of the v-flux component corresponding to <i1>,

	i.e. the background component.

	u2 (ndarray): nd array of the u-flux component corresponding to <i2>,

	i.e. the transient component.

	v2 (ndarray): nd array of the v-flux component corresponding to <i2>,

	i.e. the transient component.

	
AR_detector.wind2Cart(u, v, lats, lons)

	Convert u,v winds to Cartesian, consistent with spherical2Cart.

	Parameters

	
	u,v (float or ndarray) – u- and v- components of horizontal winds.

	lats,lons (float or ndarray) – latitude and longitude coordinates
corresponding to the wind vectors given by <u> and <v>.

	Returns

	vs (float or ndarray) –

	Cartesian representation of the horizontal

	winds.

Documentation page for AR_tracer.py

Functions to compute Hausdorff distance between AR axes pairs and link
ARs across time steps to form tracks.

Author: guangzhi XU (xugzhi1987@gmail.com)
Update time: 2020-06-05 22:46:19.

	
class AR_tracer.AR(id, data)

	Ojbect representing an AR entity

	
Hausdorff(lats, lons)

	Compute modified Hausdorff distance from the lastest record to given axis

	Parameters

	
	lats (ndarray) – 1d array, the target axis’s latitude coordinates.

	lons (ndarray) – 1d array, the target axis’s longitude coordinates.

	Returns

	float – modified Hausdorff distance from this AR to the given axis.

	
__init__(id, data)

	
	Parameters

	
	id (int) – a numeric id for each AR.

	data (pandas.DataFrame) – DataFrame storing an AR’s records.

	
anchor_lats

	1d array, get the latitude coordinates from roughly evenly spaced
points from the AR axis.

	Type

	ndarray

	
anchor_lons

	1d array, get the longitude coordinates from roughly evenly spaced
points from the AR axis.

	Type

	ndarray

	
append(ar)

	Add new records to the AR track

	
backwardHausdorff(lats, lons)

	Compute backward Hausdorff distance from the lastest record to given axis

	Parameters

	
	lats (ndarray) – 1d array, the target axis’s latitude coordinates.

	lons (ndarray) – 1d array, the target axis’s longitude coordinates.

	Returns

	float – backward Hausdorff distance from this AR to the given axis.

	
coor

	(Nx3) ndarray, (time, lat_centroid, lon_centroid) coordinates of an AR track.

	Type

	ndarray

	
duration

	track duration in hours.

	Type

	int

	
forwardHausdorff(lats, lons)

	Compute forward Hausdorff distance from the lastest record to given axis

	Parameters

	
	lats (ndarray) – 1d array, the target axis’s latitude coordinates.

	lons (ndarray) – 1d array, the target axis’s longitude coordinates.

	Returns

	float – forward Hausdorff distance from this AR to the given axis.

	
latest

	the AR record of the latest time point in an AR track.

	Type

	Series

	
lats

	1d array, the latitude coordinates of the AR axis in the latest
record in an AR’s track.

	Type

	ndarray

	
lons

	1d array, the longitude coordinates of the AR axis in the latest
record in an AR’s track.

	Type

	ndarray

	
rdp_lats

	1d array, the latitude coordinates of the simplified AR axis in
the latest record in an AR’s track.

	Type

	ndarray

	
rdp_lons

	1d array, the longitude coordinates of the simplified AR axis in
the latest record in an AR’s track.

	Type

	ndarray

	
times

	sorted time stamps of an AR track.

	Type

	Series

	
AR_tracer.filterTracks(tr_list, min_duration, min_nonrelax, verbose=True)

	Filter tracks

	Parameters

	
	tr_list (list) – list of AR objects, found tracks.

	min_duration (int) – min duration in hrs to keep a track.

	min_nonrelax (int) – min number of non-relaxed records in a track to
keep a track.

	Keyword Arguments

	verbose (bool) – print some messages or not.

	Returns

	tr_list (list) – list of AR objects, filtered tracks.

	Tracks that are filtered:

	
	tracks that are too short, controlled by ‘min_duration’

	tracks that consist of solely relaxed records.

	
AR_tracer.forwardHausdorff(lats1, lons1, lats2, lons2)

	Compute forward Hausdorff distance betweem 2 tracks

	Parameters

	
	lats1 (list or 1D array) – latitudes of track1.

	lons1 (list or 1D array) – longitudes of track1.

	lats2 (list or 1D array) – latitudes of track2.

	lons2 (list or 1D array) – longitudes of track2.

	Returns

	forward Hausdorff distance in km.

	
AR_tracer.getAnchors(arr, num_anchors=7)

	Get anchor points along from an axis.

	Parameters

	arr (ndarray) – 1D array from which to sample the anchor points.

	Returns

	(ndarray) – 1D array of the sampled anchor points from <arr>.

	
AR_tracer.getDistMatrix(tr_list, newlats, newlons)

	Compute distance matrix among track axis anchors

	Parameters

	
	tr_list (list) – list of AR objs, existing systems at time t=t.

	newlats (list or 1D array) – latitudes at t=t+1.

	newlons (list or 1D array) – longitudes at t=t+1.

	Returns

	dists (ndarray) –

	n*m matrix consisting distances between existing

	and new tracks. Rows as new records at tnow,
columns as existing tracks.

	
AR_tracer.matchCenters(tr_list, newrec, time_gap_allow, max_dist_allow, track_scheme='simple', isplot=False, plot_dir=None, verbose=True)

	Match and link nearby centers at 2 consecutive time steps

	Parameters

	
	tr_list (list) – list of AR objs, existing systems at time t=t.

	newrec (DataFrame) – new center data at time t=t+1.

	time_gap_allow (int) – max allowed gap between 2 records, in number of
hours.

	max_dist_allow (float) – max allowed Hausdorff distance allowed between
2 records, in km.

	Keyword Arguments

	
	track_scheme (str) – tracking scheme. ‘simple’: all tracks are simple

	'full' (paths.) – use the network scheme, tracks are connected by their

	points. (joint) –

	isplot (bool) – create schematic plot or not.

	plot_dir (str) – folder to save schematic plot. Only used if isplot=True.

	verbose (bool) – print some messages or not.

	Returns

	tr_list (list) –

	list of AR objs, ARs with new matching records

	appended at the end.

	allocated_recs (list): list of ints, ids of new records that are

	attributed to existing systems during the
process.

Matching is based on geo-distances and uses nearest neighbour strategy.

	
AR_tracer.plotHD(y1, x1, y2, x2, timelabel=None, linkflag='', ax=None, show=True)

	Plot Hausdorff links

	Parameters

	
	y1,x1 (ndarray) – 1d array, y, x coordinates of AR axis A.

	y2,x2 (ndarray) – 1d array, y, x coordinates of AR axis B.

	Keyword Arguments

	
	timelabel (str or None) – string of the time stamp. If given, plot as subplot title.

	linkflag (str) – a single char to denote the type of linking,
used in generated plot. ‘’ for initial linking,
‘M’ for a merging, ‘S’ for a splitting.

	ax (plt axis obj) – if not give, create a new axis to plot with.

	show (bool) – whether to show the figure or not.

	
AR_tracer.readCSVRecord(abpath_in)

	Read in individual AR records from .csv file

	Parameters

	abpath_in (str) – absolute file path to AR record file.

	Returns

	ardf (pandas.DataFrame) – record saved in DataFrame.

New in v2.0.

	
AR_tracer.trackARs(record, time_gap_allow, max_dist_allow, track_scheme='simple', isplot=False, plot_dir=None, verbose=True)

	Track ARs at consecutive time points to form tracks

	Parameters

	
	record (DataFrame) – AR records at different time slices.

	time_gap_allow (int) – max allowed gap between 2 records, in number of
hours.

	max_dist_allow (float) – max allowed Hausdorff distance allowed between
2 records, in km.

	Keyword Arguments

	
	track_scheme (str) – tracking scheme. ‘simple’: all tracks are simple

	'full' (paths.) – use the network scheme, tracks are connected by their

	points. (joint) –

	isplot (bool) – whether to create schematic plots of linking.

	plot_dir (str) – folder to save schematic plot.

	verbose (bool) – print some messages or not.

	Returns

	finished_list (list) – list of AR objs. Found tracks.

Documentation page for utils/funcs.py

Only some functions from this module are documented. The other undocumented functions are intended as private functions, not to be exposed to the user.

Utility functions

Author: guangzhi XU (xugzhi1987@gmail.com)
Update time: 2020-07-22 09:27:36.

	
utils.funcs.get3DEllipse(t, y, x)

	Get a binary 3D ellipse structuring element

	Parameters

	
	t (int) – ellipse axis length in the t (1st) dimension.

	y (int) – ellipse axis length in the y (2nd) dimension.

	x (int) – ellipse axis length in the x (3rd) dimension.

	that the axis length is half the size of the ellipse (Note) –

	that dimension. (in) –

	Returns

	result (ndarray) –

	3D binary array, with 1s side the ellipse

	defined as (T/t)^2 + (Y/y)^2 + (X/x)^2 <= 1.

	
utils.funcs.dLatitude(lats, lons, R=6371000, verbose=True)

	Return a slab of latitudinal increment (meter) delta_y.

	Parameters

	
	lats (ndarray) – 1d array, latitude coordinates in degrees.

	lons (ndarray) – 1d array, longitude coordinates in degrees.

	Keyword Arguments

	R (float) – radius of Earth;

	Returns

	delta_x (ndarray) –

	2d array, latitudinal increments.

	<var>.

	
utils.funcs.dLongitude(lats, lons, side='c', R=6371000)

	Return a slab of longitudinal increment (meter) delta_x.

	Parameters

	
	lats (ndarray) – 1d array, latitude coordinates in degrees.

	lons (ndarray) – 1d array, longitude coordinates in degrees.

	Keyword Arguments

	
	side (str) –
	‘n’: northern boundary of each latitudinal band;

	

’s’: southern boundary of each latitudinal band;
‘c’: central line of latitudinal band;

—– ‘n’

/—– ‘c’

/_______ ‘s’

	R (float) – radius of Earth.

	Returns

	delta_x (ndarray) – 2d array, longitudinal increments.

	
utils.funcs.readVar(abpath_in, varid)

	Read in netcdf variable

	Parameters

	
	abpath_in (str) – absolute file path to nc file.

	varid (str) – id of variable to read.

	Returns

	var (TransientVariable) – 4d TransientVariable.

NOTE: deprecated, use netCDF4 instead of CDAT.

	
utils.funcs.getTimeAxis(times, ntime, ref_time='days since 1900-01-01')

	Create a time axis

	Parameters

	
	times (list or tuple or array) – array of datetime objs, or strings,
giving the time stamps in the format of ‘yyyy-mm-dd HH:MM’. It is
assumed to be in chronological order.
If None, default to create a dummy time axis, with 6-hourly time
step, starting from <ref_time>, with a length of <ntime>.

	ntime (int) – length of the time axis. If <times> is not None, it is
checked to insure that length of <times> equals <ntime>. If <times>
is None, <ntime> is used to create a dummy time axis with a length
of <ntime>.

	Keyword Arguments

	ref_time (str) – reference time point. If <times> is not None, used to
create the numerical values of the resulant time axis with this
reference time. If <times> is None, used to create a dummy time
axis with this reference time.

	Returns

	result (list) –

	a list of datetime objs. If <times> is not None,

	the datetime objs are using the provided time stamps.
Otherwise, it is a new time series, with 6-hourly time
step, starting from <ref_time>, with a length of <ntime>.

New in v2.0.

Documentation page for utils/plot.py

Only some functions from this module are documented. The other undocumented functions are intended as private functions, not to be exposed to the user.

Plotting Functions.

Author: guangzhi XU (xugzhi1987@gmail.com)
Update time: 2020-07-22 09:27:30.

	
utils.plot.plot2(var, method, ax, legend='global', xarray=None, yarray=None, title=None, latlon=True, latlongrid=False, fill_color='0.8', legend_ori='horizontal', clean=False, iscartopy=True, fix_aspect=True, verbose=True)

	A helper function for quickly create 2D plots

	Parameters

	
	var (NCVAR or ndarray) – variable to plot. At least 2D.

	method – plotting method, could be an instance of Boxfill, Isofill.

	ax – matplotlib axis obj.

	Keyword Arguments

	
	legend (str) – location of colorbar. Could be: ‘global’: all subplots
share the colorbar of the 1st subplot in figure. or
‘local’: each subplot in figure uses its own colorbar.

	xarray (ndarray) – 1d array, the array values for the x-axis. If None,
use the int indices for the x-dimension.

	yarray (ndarray) – 1d array, the array values for the y-axis. If None,
use the int indices for the y-dimension.

	title (str) – title to plot at subtitle. If None, plot only an
alphabetical index.

	latlon (bool) – plot lat/lon axis labels or not.

	latlongrid (bool) – plot lat/lon grid lines or not.

	fill_color – color to fill continent or masked regions.

	legend_ori (str) – ‘horizontal’ or ‘vertical’, colorbar orientation.

	clean (bool) – if True, omit axis labels, colorbar, subtitle,
continents, boundaries etc.. Useful to overlay plots.

	iscartopy (bool) – plot using cartopy or not. Usually used to force
plot as a normal 2d plot instead of geographical plot using cartopy.

	fix_aspect (bool) – passed to the cartopy plotting function
(e.g. contourf()) for control of aspect ratio. NOTE: needs to be
deprecated.

	
utils.plot.plotAR(ardf, ax, lonax)

	Helper function to plot the regions and axes of ARs

	Parameters

	
	ardf (pandas.DataFrame) – table containing AR records.

	ax (matplotlib axis) – axis to plot onto.

	lonax (ndarray) – 1d array of the longitude axis the plot is using.

	
utils.plot.plotARTrack(arlist, latax, lonax, ax, full=False, label=None, linestyle='solid', marker=None)

	Plot AR tracks

	Parameters

	
	arlist (list) – list of AR objects to plot.

	latax,lonax (ndarray) – 1darrays giving latitude- and longitude-
coordinates of the plotting domain.

	ax (matplotlib.axis) – axis to plot onto.

	Keyword Arguments

	
	full (bool) – if True, plot tracks of an AR from its entire lifecycle.
if False, plot only the track of the last time step.

	label (str or None) – type of label to label tracks.
‘id’: label with AR id.
‘time’: label with time stamp.
None: don’t put label.

	linestyle (str) – line style to plot the tracks.

	marker (str) – marker to plot track axes.

	
class utils.plot.Boxfill(vars, zero=1, split=2, max_level=None, min_level=None, ql=None, qr=None, cmap=None, verbose=True)

	
	
__init__(vars, zero=1, split=2, max_level=None, min_level=None, ql=None, qr=None, cmap=None, verbose=True)

	Return an isofill object with specified color scheme.

	Parameters

	vars – one or a list of variables, from which the <minlevel>
and <maxlevel> is obtained.
If <vars> has more than 1 variables, then function calculates
the minimum and maximum of all variables, thus the color
legend would be unified for all subplots.
Note that if <max_level> and/or <min_level> are given,
they will override the maximum/minimal levels derived
from <vars>.

	Keyword Arguments

	
	zero (int) – controls 0 in created <levels>: -1: 0 is NOT allowed to be a level;
1: 0 is permitted to be a level;
2: 0 forced to be a level.

	split (int) – int, control behavior of negative and positive values 0: Do not split negatives and positives, map onto entire range of [0,1];
1: split only when vmin<0 and vmax>0, otherwise map onto entire range of [0,1];

If split is to be applied, negative values are mapped onto first half [0,0.5],
and postives onto second half (0.5,1].

	2: force split, if vmin<0 and vmax>0, same as <split>==1;

	If vmin<0 and vmax<0, map onto 1st half [0,0.5];
If vmin>0 and vmax>0, map onto 2nd half (0.5,1].

	max_level,min_level (float) – the max/min limits to be plotted out, values
outside the range will be grouped into the
last level intervals on both ends.

	ql,qr (float) – extreme percentiles for the lower and upper boundaries.
Could be one of the values in the list:

percents=[0.001,0.005,0.01,0.025,0.05,0.1]

E.g. ql=0.001; qr=0.005
means that the 0.1% percentile will be set to the minimum level;
0.005% (from the right most, or 99.95% from the left most) percentil will
be set to the maximum level.

If both <ql> and <min_level> are given, use <min_level>.
If both <qr> and <max_level> are given, use <max_level>.

	cmap – specify a color map. Could be:
1) None, a default blue-white-red (bwr) color map will be created.
2) a matplotlib cmap obj.
3) a string name of a matplotlib cmap obj, to list of few:

’bwr’: blue-white-red
‘RdBu’: darkred-white-blue
‘RdYlBu’: red-yellow-white-blue
‘RdYlGn’: red-yellow-white-green
‘spectral’: purple-yellow-cyan-blue
‘seismic’: darkblue-white-darkred
‘jet’: rainbow darkblue-darkred
‘rainbow’: rainbow purple-red

Append ‘_r’ to get the reversed colormap.

Note

<minlevel> and <maxlevel> are better derived using numpy.min() and numpy.max(). MV.min() and MV.max() may have problems.
Iso levels are computed using vcs function (mkscale()), and a matplotlib
colormap is created (if not given), and the colormap will be changed so
positive/negative splits (if required) is achieved.

Update time: 2015-04-27 14:55:33

	
class utils.plot.Isofill(vars, num=15, zero=1, split=2, max_level=None, min_level=None, ql=None, qr=None, cmap=None, verbose=True)

	
	
__init__(vars, num=15, zero=1, split=2, max_level=None, min_level=None, ql=None, qr=None, cmap=None, verbose=True)

	Return an isofill object with specified color scheme.

	Parameters

	vars – one or a list of variables, from which the <minlevel>
and <maxlevel> is obtained.
If <vars> has more than 1 variables, then function calculates
the minimum and maximum of all variables, thus the color
legend would be unified for all subplots.
Note that if <max_level> and/or <min_level> are given,
they will override the maximum/minimal levels derived
from <vars>.

	Keyword Arguments

	
	Num (int) – is the (maximum) number of isoline levels;

	zero (int) – controls 0 in created <levels>: -1: 0 is NOT allowed to be a level;
1: 0 is permitted to be a level;
2: 0 forced to be a level.

	split (int) – int, control behavior of negative and positive values 0: Do not split negatives and positives, map onto entire range of [0,1];
1: split only when vmin<0 and vmax>0, otherwise map onto entire range of [0,1];

If split is to be applied, negative values are mapped onto first half [0,0.5],
and postives onto second half (0.5,1].

	2: force split, if vmin<0 and vmax>0, same as <split>==1;

	If vmin<0 and vmax<0, map onto 1st half [0,0.5];
If vmin>0 and vmax>0, map onto 2nd half (0.5,1].

	max_level,min_level (float) – the max/min limits to be plotted out, values
outside the range will be grouped into the
last level intervals on both ends.

	ql,qr (float) – extreme percentiles for the lower and upper boundaries.
Could be one of the values in the list:

percents=[0.001,0.005,0.01,0.025,0.05,0.1]

E.g. ql=0.001; qr=0.005
means that the 0.1% percentile will be set to the minimum level;
0.005% (from the right most, or 99.95% from the left most) percentil will
be set to the maximum level.

If both <ql> and <min_level> are given, use <min_level>.
If both <qr> and <max_level> are given, use <max_level>.

	cmap – specify a color map. Could be:
1) None, a default blue-white-red (bwr) color map will be created.
2) a matplotlib cmap obj.
3) a string name of a matplotlib cmap obj, to list a few:

’bwr’: blue-white-red
‘RdBu’: darkred-white-blue
‘RdYlBu’: red-yellow-white-blue
‘RdYlGn’: red-yellow-white-green
‘spectral’: purple-yellow-cyan-blue
‘seismic’: darkblue-white-darkred
‘jet’: rainbow darkblue-darkred
‘rainbow’: rainbow purple-red

Append ‘_r’ to get the reversed colormap.

Note

<minlevel> and <maxlevel> are better derived using numpy.min() and numpy.max(). MV.min() and MV.max() may have problems.
Iso levels are computed using vcs function (mkscale()), and a matplotlib
colormap is created (if not given), and the colormap will be changed so
positive/negative splits (if required) is achieved.

Update time: 2015-04-27 14:55:33

	
class utils.plot.Plot2D(var, method, ax=None, xarray=None, yarray=None, title=None, latlon=True, latlongrid=False, legend='global', legend_ori='horizontal', clean=False)

	
	
__init__(var, method, ax=None, xarray=None, yarray=None, title=None, latlon=True, latlongrid=False, legend='global', legend_ori='horizontal', clean=False)

	Utility class for 2D plots

	Parameters

	
	var (NCVAR or ndarray) – variable to plot. At least 2D.

	method – plotting method, could be an instance of Boxfill, Isofill.

	Keyword Arguments

	
	ax – matplotlib axis obj. If None, create a new.

	xarray (ndarray) – 1d array, the array values for the x-axis. If
None, use the int indices for the x-dimension.

	yarray (ndarray) – 1d array, the array values for the y-axis. If
None, use the int indices for the y-dimension.

	title (str) – title to plot at subtitle. If None, plot only an
alphabetical index.

	latlon (bool) – plot lat/lon axis labels or not.

	latlongrid (bool) – plot lat/lon grid lines or not.

	legend (str) – location of colorbar. Could be: ‘global’: all
subplots share the colorbar of the 1st subplot in figure. or
‘local’: each subplot in figure uses its own colorbar.

	legend_ori (str) – ‘horizontal’ or ‘vertical’, colorbar orientation.
clean (bool): if True, omit axis labels, colorbar, subtitle,
continents, boundaries etc.. Useful to overlay plots.

	
classmethod checkBasemap(var, xarray, yarray)

	Check variable should be plotted using basemap or not

	
getGrid()

	Get lat/lon grid info from data

	
classmethod getSlab(var)

	Get a 2D slab from variable

	Parameters

	
	var (NCVAR or ndarray) – nd variable. If is transient variable, try

	slice its 1st time point. If numpy.ndarray, try to take a slab (to) –

	its last 2 dimensions. (from) –

	Returns

	result (ndarray) – a 2d slab from input <var> to plot.

	
class utils.plot.Plot2Cartopy(var, method, ax, legend='global', title=None, xarray=None, yarray=None, latlon=True, latlongrid=False, fill_color='0.8', legend_ori='horizontal', clean=False, fix_aspect=False)

	
	
classmethod checkBasemap(var, xarray, yarray)

	Check variable should be plotted using basemap or not

	
getGrid()

	Get lat/lon grid info from data

	
classmethod getSlab(var)

	Get a 2D slab from variable

	Parameters

	
	var (NCVAR or ndarray) – nd variable. If is transient variable, try

	slice its 1st time point. If numpy.ndarray, try to take a slab (to) –

	its last 2 dimensions. (from) –

	Returns

	result (ndarray) – a 2d slab from input <var> to plot.

 Python Module Index

 a |
 c |
 t |
 u

 		 	

 		
 a	

 	
 	
 AR_detector	

 	
 	
 AR_tracer	

 		 	

 		
 c	

 	
 	
 compute_thr_multifile	

 		 	

 		
 t	

 	
 	
 thr	

 		 	

 		
 u	

 	[image: -]
 	
 utils	

 	
 	
 utils.funcs	

 	
 	
 utils.plot	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (AR_tracer.AR method)

 	(utils.plot.Boxfill method)

 	(utils.plot.Isofill method)

 	(utils.plot.Plot2D method)

A

 	
 	anchor_lats (AR_tracer.AR attribute)

 	anchor_lons (AR_tracer.AR attribute)

 	append() (AR_tracer.AR method)

 	applyCropIdx() (in module AR_detector)

 	
 	AR (class in AR_tracer)

 	AR_detector (module)

 	AR_tracer (module)

 	areaFilt() (in module AR_detector)

B

 	
 	backwardHausdorff() (AR_tracer.AR method)

 	
 	Boxfill (class in utils.plot)

C

 	
 	cart2Spherical() (in module AR_detector)

 	cart2Wind() (in module AR_detector)

 	checkBasemap() (utils.plot.Plot2Cartopy class method)

 	(utils.plot.Plot2D class method)

 	checkCyclic() (in module AR_detector)

 	
 	compute_thr_multifile (module)

 	computeTheta() (in module AR_detector)

 	coor (AR_tracer.AR attribute)

 	cropMask() (in module AR_detector)

 	crossSectionFlux() (in module AR_detector)

 	cyclicLabel() (in module AR_detector)

D

 	
 	determineThresLow() (in module AR_detector)

 	dLatitude() (in module utils.funcs)

 	
 	dLongitude() (in module utils.funcs)

 	duration (AR_tracer.AR attribute)

F

 	
 	filterTracks() (in module AR_tracer)

 	findARAxis() (in module AR_detector)

 	findARs() (in module AR_detector)

 	
 	findARsGen() (in module AR_detector)

 	forwardHausdorff() (AR_tracer.AR method)

 	(in module AR_tracer)

G

 	
 	get3DEllipse() (in module utils.funcs)

 	getAnchors() (in module AR_tracer)

 	getARAxis() (in module AR_detector)

 	getARData() (in module AR_detector)

 	getAttrDict() (in module thr)

 	getDistMatrix() (in module AR_tracer)

 	
 	getGrid() (utils.plot.Plot2Cartopy method)

 	(utils.plot.Plot2D method)

 	getNormalVectors() (in module AR_detector)

 	getSlab() (utils.plot.Plot2Cartopy class method)

 	(utils.plot.Plot2D class method)

 	getTimeAxis() (in module utils.funcs)

H

 	
 	Hausdorff() (AR_tracer.AR method)

I

 	
 	insertCropSlab() (in module AR_detector)

 	
 	Isofill (class in utils.plot)

L

 	
 	latest (AR_tracer.AR attribute)

 	
 	lats (AR_tracer.AR attribute)

 	lons (AR_tracer.AR attribute)

M

 	
 	maskToGraph() (in module AR_detector)

 	
 	matchCenters() (in module AR_tracer)

P

 	
 	partPeaks() (in module AR_detector)

 	partPeaksOld() (in module AR_detector)

 	plot2() (in module utils.plot)

 	Plot2Cartopy (class in utils.plot)

 	Plot2D (class in utils.plot)

 	
 	plotAR() (in module utils.plot)

 	plotARTrack() (in module utils.plot)

 	plotGraph() (in module AR_detector)

 	plotHD() (in module AR_tracer)

 	prepareMeta() (in module AR_detector)

R

 	
 	rdp_lats (AR_tracer.AR attribute)

 	rdp_lons (AR_tracer.AR attribute)

 	
 	readCSVRecord() (in module AR_tracer)

 	readVar() (in module utils.funcs)

 	rotatingTHR() (in module thr)

S

 	
 	save2DF() (in module AR_detector)

 	
 	spherical2Cart() (in module AR_detector)

T

 	
 	thr (module)

 	THR() (in module thr)

 	
 	times (AR_tracer.AR attribute)

 	trackARs() (in module AR_tracer)

U

 	
 	utils.funcs (module)

 	
 	utils.plot (module)

 	uvDecomp() (in module AR_detector)

W

 	
 	wind2Cart() (in module AR_detector)

LICENSE

	GNU GENERAL PUBLIC LICENSE

	Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for

software and other kinds of works.

The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program–to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains

that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

	Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this

License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based

on the Program.

To “propagate” a work means to do anything with it that, without

permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices”

to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

	Source Code.

The “source code” for a work means the preferred form of the work

for making modifications to it. “Object code” means any non-source
form of a work.

A “Standard Interface” means an interface that either is an official

standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all

the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that

same work.

	Basic Permissions.

All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

	Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

	Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

	Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

	Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any

tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods,

procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

	Additional Terms.

“Additional permissions” are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further

restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions;
the above requirements apply either way.

	Termination.

You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

	Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

	Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

	Patents.

A “contributor” is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims

owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express

agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is “discriminatory” if it does not include within

the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

	No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

	Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

	Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

	Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

	Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

	Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

{one line to give the program’s name and a brief idea of what it does.}
Copyright (C) {year} {name of author}

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short

notice like this when it starts in an interactive mode:

{project} Copyright (C) {year} {fullname}
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,

if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

Documentation page for compute_thr_multifile.py

Compute 3d THR on IVT. Process multiple data files too large to fit into
RAM.

Difference from compute_thr_singlefile.py:

this is for computing THR process on multiple data files that are too
large to fit into RAM. Like a moving average, the THR process is
less accurate at the ends of the data domain. For data saved into multiple
files (usually separated by time), this may create some discontinuity
at the ends of each file. To overcome this, 2 files are read in at a time,
data are concatenated in time dimension, therefore the transition
between these 2 data files is “smooth”. Then the 3rd file is read in to
form a smooth transition between the 2nd and the 3rd files. Then the same
process rotates on. The outputs are saved one for a year.

	Input:

	IVT (integrated Vapor Transport) in netCDF format, one file for a year
(or a month, depending on your specific organization of data files).
The file name is assumed to have a format that there is a field that
specifies the year, e.g. “ivt_m1-60_6_%d_cln.nc”. The %d field is replaced
by a year, e.g. 2000.

Data are assumed to be in the format: (time, level, latitude, longitude)
dimensions (level dimension is optional, if present, should be a
singleton axis of length 1).

NOTE: data should have proper time, latitude and longitude axes.

Optional input:

Orographic data providing the surface terrain elevations, that correspond
to the IVT data. This is used to perform some extra computations over
high terrain regions to enhance the inland penetration of ARs. The mostly
affected area is the western coast of North America. Other areas are mostly
not affected.

Usage:

Change global parameters in the Globals section to point to the storage
location of IVT data, and specificy an output folder to save results.

Specify the latitudinal domain in LAT1, LAT2.

The KERNEL parameter specifies the t and s parameters of the
structuring element size.
t is in number time steps, s is number of grid cells.
See paper for more details, but basically the choices of t and s
should correspond to the synoptic temporal and spatial scales.

SHIFT_LON shifts the longitude by a given degree of longitudes, so
that the Pacific and Atlantic basins can be centered.

	Run the script as:

	`
python compute_thr_multifile.py
`

Author: guangzhi XU (xugzhi1987@gmail.com)
Update time: 2020-07-22 10:23:35.

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/ar_track_198424.png
+100° +125° +150° +175° -160° -135° -110° -85° -60° -35° -10° +15° +40° +65°

_images/fig16.png

_images/ar_1984-01-04_06:00.png
(a) 1984-01-04 06:00 IVT

(b) 1984-01-04 06:00 Reconstruction

(c) 1984-01-04 06:00 THR

kg/m/s

_images/fig2.png
s/wi/63

[=] [=]

o Is] [=] [=] [=] [=]
I o o o o o
— — © © < ~

AR axis, 2007-12-01 00:00

_images/fig3.png
(a) 1984-1-26 .0, IVT (=IVT_rec + IVT_ano)

600 800 1000 1200
kg m#-1 sex1

100 300 500 700 900 1100
(b) 1984-1-26 0:0:0.0, IVT_rec

600 800 1000 1200
kg m#-1 sex1

100 300 500 700 900 1100
(c) 1984-1-26 0, IVT_ano

-170° -80° 40° 0° +40°
200 400 600 800 1000 1200
kg m#-1 sex1

300 500 700 900 1100

_images/nn.png
Algorithm 1: Nearest neighbor algorithm

Data: A: list of existing tracks at ¢, B: list of new records at ¢ + 1, M: distance
matrix, H*: maximum allowed distance, R™: list of indices of tracks not
allowed to link, C'~: list of indices of records not allowed to link.

Result: A: updated list of tracks. R™: list of indices of tracks get linked. C'*:

list of indic f records get linked.
1 create empty lists RY =[] and CT = [];
2 while min(M) < H* and lsw(R*) < min(n,m) do

3 | for each) that M(i, j) = min(M) do
4 if 1 C~ then
5
6 Bl
7 1f tlmc stamp of b; = latest time stamp of a; then
* relevant for network scheme only;
the track has got a new record, splitting happening;
retrieve the original a; */
8 let a; = A'[i];
/* make a mew track */
9 append a; to A;
10 end
11 add i to RT;
12 add j to C;
13 add i to R’:
14 add j to C~
15 append b to a;;
16 let M(i 1= 00;
17 else
18 let M(i,j) :=
19 end
20 end

21 end

nav.xhtml

 Table of Contents

 		
 IPART’s documentation

 		
 Data preparation

 		
 netcdf data

 		
 Metadata

 		
 Compute IVT

 		
 Perform the THR computation on IVT data

 		
 The Top-hat by Reconstruction (THR) algorithm

 		
 Compute THR

 		
 Dedicated Python script

 		
 Example output

 		
 Notebook example

 		
 References

 		
 Detect AR appearances from THR output

 		
 Definition of AR occurrence

 		
 Input data

 		
 Usage in Python scripts

 		
 AR records DataFrame

 		
 Dedicated Python script

 		
 Example output

 		
 Notebook example

 		
 Find the axis from detected AR

 		
 Axis-finding in a planar graph framework

 		
 Usage in Python scripts

 		
 Dedicated Python script

 		
 Notebook example

 		
 Track ARs at individual time steps to form tracks

 		
 The modified Hausdorff distance definition

 		
 The nearest neighbor link method

 		
 Input data

 		
 Usage in Python scripts

 		
 Example output

 		
 Dedicated Python script

 		
 Notebook example

 		
 thr.py

 		
 AR_detector.py

 		
 AR_tracer.py

 		
 utils.funcs.py (selected parts)

 		
 utils.plot.py (selected parts)

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

